

Fig. 2. Orientational structure of the cubic 32 -molecule intermediate phase of deuteromethane (space group Fm3c). The projection is of two layers on the plane (001).

Tetragonal lattice distortion along $z$ resulting from the transition of the cubic intermediate phase into the low-temperature phase seems to be due to a preferred molecular orientation in planes parallel to the $c$ axis and containing molecules with point symmetry $C_{1}$.

Thus, in the low-temperature phase of deuteromethane, molecules reside at three types of sites which essentially differ in their lattice-field symmetry; however, contrary to the results of Maki, Kataoka \& Yamamoto (1978), our experiments provide evidence for lower point symmetry. It should be noted that some recent work (Medina \& Daniels, 1978; Kobashi, 1978) on Raman and IR spectra in the intermediate and low-temperature phases of methane under pressure at 4.2 K also revealed three types of molecular point symmetries in $\alpha-\mathrm{CH}_{4}$ which have very different molecular fields.

The authors thank I. N. Krupskii and A. I. Erenburg for discussion of the results.

## References

Arzi, G. \& Sandor, G. (1975). Acta Cryst. A31, S188.
Baer, D. R., Fraase, B. A., Riehl, D. H. \& Simmons, R.D. (1978). J. Chem. Phys. 68(4), 1411-1417.

International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.

James, H. M. \& Keenan, T. A. (1959). J. Chem. Phys. 31(1), 12-41.
Kitaigorodski, A. I. (1971). Molecular Crystals. Moscow: Nauka.
Kobashl, K. (1978). Abstracts. Symposium on Solid Methane. McMaster Univ., Hamilton, Canada, October 13-14.
Krasnov, K. S., Timoshin, V. S., Danilova, T. G. \& Khandozhкo, S. V. (1968). Molekulyarnye Postoyannye Neorganicheskikh Sovedineniy, p. 158. Leningrad: Khimiya.
Maki, K., Kataoka, Y. \& Yamamoto, T. (1978). Theory of Phase Transitions in Solid Methanes. XII. Preprint, Kyoto Univ., Japan.
Medina, F. D. \& Daniels, W. B. (1978). Abstracts. Symposium on Solid Methane. McMaster Univ., Hamilton, Canada, October 13-14.
Press, W. (1972). J. Chem. Phy's. 56(6), 2597-2609.
Press, W. \& Hüller, A. (1974). Anharmonic Lattices, Structural Transitions and Melting, p. 185. Noordhoff: Riste.
Prokhvatilov, A. I., Gasan, V. M. \& Erenburg, A. I. (1970). Fiz. Kondens. Sostoyaniya, 10, 135-153.

Titov, Yu. G., Verkhorobin, L. F. \& Matyushenko, N. N. (1972). Kristallografiya, 17(5), 1053-1059.

Acta Cryst. (1980). B36, 1580-1588

# The Structures of Two Forms of Tetraphenyldithiapyranylidene* Polyiodide, One-Dimensional Organic Conductors 

By Henry R. Luss and Douglas L. Smith<br>Research Laboratories, Eastman Kodak Company, Rochester, New York 14650, USA

(Received 14 September 1979; accepted 11 February 1980)


#### Abstract

The crystal structures of two forms of the ion-radical salt of tetraphenyldithiapyranylidene ( $\varphi_{4}$ DTP) and iodine have been determined from X-ray diffractometer data. Both structures were solved by Patterson and

^[ * 3.3'.5.5'-Tetraphenyl-4.4'-dithia-1,1'-bi-2.5-cyclohexadienylidene. ]


Fourier methods and refined by full-matrix least squares. One form (DTPI1) is orthorhombic, Fddd, with $a=30.99$ (3), $b=54.83$ (7), $c=3.700$ (4) $\AA$ and $Z=8$. The second form (DTPI2) is tetragonal, $P \overline{4} b 2$, with $a=19.74$ (2), $c=3.721$ (5) $\AA$ and $Z=2$. In addition to the Bragg reflections, diffuse streaks on precession photographs indicate disordered lattices incommensurate along $c$ with a repeat of $c^{\prime}=9.39 \AA$
for DTPI 1 and $9.7 \AA$ for DTPI2. In both compounds, the $\varphi_{4}$ DTP donor molecules are not planar but have crystallographic 222 symmetry and stack uniformly along $c$. In DTPI 1 the I atoms are present as both $\mathrm{I}_{3}^{-}$ and $\mathrm{I}_{5}^{-}$ions which occupy channels parallel to the donor stacks. A model with one chain of $\mathrm{I}_{3}^{-}$ions and two chains of $\mathrm{I}_{5}^{-}$ions per donor stack refined to $R=0.057$. Only $\mathrm{I}_{3}^{-}$ions are present in DTPI2 and there are two chains of these ions per stack of donor molecules. A model in which $50 \%$ of the $\mathrm{I}_{3}^{-}$ions were incommensurate with the $\varphi_{4}$ DTP lattice refined to $R=0.042$. There are no significant differences in the $\varphi_{4}$ DTP bond lengths between the two forms, indicating that the formal charge on the donor molecules is about the same in both forms, consistent with the stoichiometries $\varphi_{4} \mathrm{DTP}\left(\mathrm{I}_{3}\right)_{0.36}\left(\mathrm{I}_{5}\right)_{0.40}$ for DTPI1 and $\varphi_{4} \operatorname{DTP}\left(\mathrm{I}_{3}\right)_{0.72}$ for DTPI2.

## Introduction

The structures and physical properties of highly conducting organic charge-transfer salts have been extensively investigated in recent years (Perlstein, 1977; Stucky, Schultz \& Williams, 1977). These materials are characterized by the presence of segregated stacks of donor and acceptor molecules and a mixed-valence state. The most efficient organic conductors contain molecules which upon one-electron oxidation or reduction form a new aromatic sextet whose aromaticity can migrate by mixed-valence interaction (Perlstein, 1977). Such is the case with the donor molecule, $\varphi_{4}$ DTP:


The ion-radical salt $\varphi_{4}$ DTP:TCNQ and its oxygen analog $\varphi_{4} \mathrm{DP}:$ TCNQ have been examined and singlecrystal conductivities at room temperature of $15000-$ 25000 and $4000 \Omega^{-1} \mathrm{~m}^{-1}$, respectively, were reported (Alizon et al., 1977; Isett, Reynolds, Schneider \& Perlstein, 1979a). It is not known, however, to what extent charge transport along the $\varphi_{4}$ DTP stack contributes to the conductivity in these materials, and so complexes without TCNQ have been sought.

Previously, Isett \& Perez-Albuerne (1977) and Isett (1978) had prepared and studied an ion-radical salt of tetrathiotetracene (TTT) with stoichiometry $\mathrm{TTT}_{2} \mathrm{I}_{3}$. A single-crystal conductivity of $10^{5} \Omega^{-1} \mathrm{~m}^{-1}$ at room temperature along the stacking axis was reported. The crystal structure (Smith \& Luss, 1977) showed that this material fits the criteria described above for an efficient organic conductor. Subsequently, two crystal forms of the ion-radical salt of $\varphi_{4}$ DTP and iodine were prepared
and studied by Isett, Reynolds, Schneider \& Perlstein (1979b). One form (DTPI1) is orthorhombic with a single-crystal conductivity of $200 \Omega^{-1} \mathrm{~m}^{-1}$ at room temperature. The other form (DTPI2) is tetragonal and has a single-crystal conductivity at room temperature of $12000 \Omega^{-1} \mathrm{~m}^{-1}$. We report here the crystal structures of these two materials.

## Experimental

Blue-gray, long, six-sided, prismatic (c) crystals of DTPI1 were grown at the interface between a toluene solution of $\varphi_{4}$ DTP and an acetonitrile solution of $\mathrm{I}_{2}$ at 328 K . The ratio of $\varphi_{4} \mathrm{DTP} / \mathrm{I}_{2}$ was $1 / 1 \cdot 15$. Greenishgray, long, square, prismatic (c) crystals of DTPI2 were grown by slow evaporation of THF/acetonitrile solutions mixed in the ratio of $1 / 1 \cdot 6$ for $\varphi_{4} \mathrm{DTP} / \mathrm{I}_{2}$. This procedure gave both forms, with the orthorhombic form predominant.

Crystal data for both forms are given in Table 1. The stoichiometries given were those used in the final refinements. The lattice constants were refined by least-squares analysis of the setting angles of 11 reflections ( $27^{\circ}<2 \theta<45^{\circ}$ ) for DTPI1 and 10 reflections ( $29^{\circ}<2 \theta<34^{\circ}$ ) for DTPI2, centered through narrow slits at low source angle on a Picker diffractometer.

Systematic absences were determined from precession photographs which also showed, for both compounds, a pattern of diffuse density perpendicular to the short (c) axis with a period incommensurate with c. Diffuse streaks due to one-dimensionally disordered polyiodide chains and having a supercell repeat distance incommensurate with the organic subcell have often been reported, e.g. $\mathrm{TTT}_{2} \mathrm{I}_{3}$ (Smith \& Luss, 1977) and 5,10-diethyl-5,10-dihydrophenazinium iodide (Endres et al., 1979). These compounds are type (d) in the classification given by Herbstein \& Kapon (1972).

Table 1. Crystal data

| Formula <br> $M_{r}$ | $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{I}_{3.09} \mathrm{~S}_{2}$ <br> 8 | $\mathrm{C}_{34} \mathrm{H}_{24} \mathrm{I}_{2 \cdot 15} \mathrm{~S}_{2}$ 7 |
| :---: | :---: | :---: |
| Crystal system | Orthorhombic | Tetragonal |
| Space group | Fddd | $P \overline{4} b 2$ |
| Unit cell $a$ | 30.99 (3) $\AA$ | 19.74 (2) $\AA$ |
| $b$ | 54.83 (7) |  |
| $c$ | 3.700 (4) | 3.721 (5) |
| $V$ | 6287 (12) $\AA^{3}$ | 1450 (3) $\AA^{3}$ |
| $Z$ | 8 | 2 |
| $D_{\text {c }}$ | $1.88 \mathrm{Mg} \mathrm{m}^{-3}$ | $1.76 \mathrm{Mg} \mathrm{m}^{-3}$ |
| $D_{m}$ | 1.92 | 1.79 |
| $F(000)$ | 3390 | 748 |
| $\mu(\mathrm{Mo} \mathrm{Kor})$ | $3.3 \mathrm{~mm}^{-1}$ | $2.5 \mathrm{~mm}^{-1}$ |

Only one weak diffuse streak was visible on the $h 0 l$ and 0 kl photographs of DTPIl, which corresponded to a spacing of about $3.13 \AA$. By analogy to $\mathrm{TTT}_{2} \mathrm{I}_{3}$, which had several additional weak streaks, this may be the third order of a supercell repeat of $9.39 \AA$. However, it could also be the fifth order of a supercell repeat of $15.65 \AA$ characteristic of $1_{5}^{-}$(Herbstein \& Kapon, 1972). The diffuse scattering for DTPI2 is more complex. In addition to a strong third-order streak, there are five weak streaks corresponding to orders $1,2,4,6$ and 7 of a $9.7 \AA$ period. The intensity pattern is similar to that observed in other polyiodide complexes (see, e.g., Smith \& Luss, 1977; Huml, 1967; Endres et al., 1976, 1979). In addition, there is a weak streak at a spacing of $2.7 \AA$ which corresponds to 9.7 $\AA$ if measured from the $l=1$ row of spots.

For DTPIl, systematic absences ( $h k l: h+k$ and $k+l \neq 2 n, 0 k l: k+l \neq 4 n, h 0 l: h+l \neq 4 n, h k 0: h+k$ $\neq 4 n$ ) established the space group as $F d d d$. For DTPI2, systematic absences ( $0 k l: k \neq 2 n$ and $h 00: h \neq 2 n$ ) were consistent with space groups $P 4 b m, P \overline{4} b 2$ and $P 4 / \mathrm{mbm}$. $P \overline{4} b 2$ was chosen from crystal-packing considerations and confirmed by successful structure refinement.

A DTPI 1 crystal $0.08 \times 0.10 \times 0.76 \mathrm{~mm}$ was used for intensity-data collection on a card-controlled Picker four-circle diffractometer at $297 \pm 2 \mathrm{~K}$ with Zr -filtered Mo radiation. 1414 unique reflections for $2 \theta<50^{\circ}$ were measured by the $\theta-2 \theta$ scan method at a $2 \theta$ scan rate of $1^{\circ} \mathrm{min}^{-1}$. Scans were from $0.95^{\circ}$ below the $K a_{1}$ peak to $0.70^{\circ}$ above the $K r_{2}$ peak, except for low-angle reflections where the lower limit was adjusted to avoid the $K \beta$ peak. Backgrounds were measured for 20 s at each end of the scan. A standard reflection (11,19,1), remeasured every fiftieth reflection, was used to scale the data. The standard showed fluctuations of as much as $\pm 18 \%$ from the mean; these fluctuations correlated with laboratory conditions, especially temperature and utility load, and were not caused by crystal instability.

For DTP12, a crystal $0.15 \times 0.20 \times 0.76 \mathrm{~mm}$ was used for data collection; 1021 unique reflections for $2 \theta \leq 55^{\circ}$ were measured under similar conditions except that the scan range was broadened to $1.2^{\circ}$ below $K r_{1}$ to $0.8^{\circ}$ above $K r_{2}$. Intensities of the standard reflection $(10,2,1)$ varied $\pm 3 \%$ over the data-collection period and were used to correct the data.

The intensities were reduced to structure amplitudes after correction for background, Lorentz and polarization effects. Absorption corrections were not applied; we estimate the maximum error in $I$ caused by absorption to be $\pm 5 \%$ in DTPII and $\pm 10 \%$ in DTPI2. Standard deviations, $\sigma(I)$, were based on counting statistics and corrected to $\sigma(F) .1024$ reflections for DTPI 1 and 864 reflections for DTPI 2 had $I>\sigma(I)$ and were considered observed. Unobserved reflections were not included in the refinement.

## Structure determination and refinement

Both structures were solved by the heavy-atom method from $c$-axis $\left(E^{2}-1\right)$ Patterson projections and subsequent three-dimensional electron density maps. Refinement was by full-matrix least squares (Busing, Martin \& Levy, 1962), and included an extinction correction for DTPI2 (Luss \& Smith, 1973; Larson, 1969). Weights were defined as $\left\{\sigma^{2}\left(F_{o}\right)+\left(0.03 F_{o}\right)^{2}\right\}^{-1}$ and the atomic scattering factors were taken from International Tables for $X$-ray Crystallography (1974). The agreement factors are $R=\sum| | F_{o}|-K| F_{c}| | / \sum F_{o}, R_{w}=$ $\left|\sum w\left(\left|F_{o}\right|-K\left|F_{c}\right|\right)^{2} / \sum w F_{o}^{2}\right|^{1 / 2}$.

## DTPI1

The unit-cell data gave much initial information about the structure. Space-group restrictions require the donor molecule to have crystallographic 222 symmetry. The short $c$ axis dictated stacking in this direction so only the orientation ( $\mathrm{S} \cdots \mathrm{S}$ axis along $a$ or $b)$ and twists of the $\varphi_{4}$ DTP moiety and the locations of the I atoms were unknown. From the streaking on the precession photographs it was presumed that the I atoms form polyiodide ions which lie in columns along $c$ with the stoichiometry requiring three of these chains per stack of donor molecules. One-dimensional disorder arises because adjacent iodine columns can be shifted somewhat arbitarily relative to one another and also because of the incommensurability of the lattices.

Because of the disorder of the I atoms, a threedimensional Patterson map contained columns of density along $c$ and did not unambiguously yield atomic parameters. An $h k 0$ Patterson projection more clearly revealed the $x, y$ positions of all the atoms including the I channels, and a subsequent threedimensional electron density map phased with $S$ and $C(1)$ revealed the $z$ parameters for the remaining donor-molecule atoms. A model was also obtained for


Fig. 1. Electron density distributions in the iodine channels. Contours are at intervals of $5 \mathrm{e} \AA^{3}$ starting at $5 \mathrm{e} \AA^{-3}$. (a) I(1) channel of DTPII at $x=\frac{3}{8}$. I(1) positions are indicated by + . (b) $\mathrm{I}(2), \mathrm{I}(3)$ channel in DTPII at $x=\frac{1}{8} . \quad \mathrm{I}(2 A), \quad \mathbf{A}=\mathrm{I}(2)$, $\square=I(3)$. (c) I(1), I(2) channel in DTPI2 plotted for a diagonal section. $+=I(1), \mathbf{\Delta}=I(2)$.
the I atoms. Following refinement with anisotropic temperature factors, a difference electron density map revealed the H atom positions.

Refinement was hampered by the disordered I atoms. Although the streaking on the precession photographs indicated an iodine lattice which was incommensurate with the donor lattice, it soon became obvious that the major portion of the I atoms lay on the donor lattice. The I atoms made substantial contributions to structure factors with $l \neq 0$, and the electron density in the iodine channels was not uniform but varied along both $b$ and $c$. Electron density sections though the two unique iodine channels, calculated using the final atomic positions for I indicated, are shown in Fig. $1(a)$ and (b). The third channel per donor stack is generated from the channel in Fig. 1(b) by the cell symmetry shown.

The observed density of the crystals implies a unit-cell composition of eight $\varphi_{4} \mathrm{DTP}(\mathrm{I})_{3.2}$ units which in Fddd corresponds to 0.8 I atoms per asymmetric unit. Many models of disordered I atoms with fractional occupancy factors were tested. Initially we used models with chains of $I_{3}^{-}$ions in all channels and obtained an $R$ as low as $0.058\left(R_{w}=0.068\right)$. During the refinement, resonance Raman spectra (Trotter, 1979) indicated the presence of both $I_{3}^{-}$and $I_{5}^{-}$but not $I_{2}$. The relative amounts of $\mathrm{I}_{3}^{-}$and $\mathrm{I}_{5}^{-}$were not established by the Raman study, but a model in which there was one channel of $I_{3}^{-}$and two channels of $I_{5}^{-}$refined to $R=0.057$ ( $R_{w}=0.068$ ). Although the $\mathrm{I}_{3}^{-}$and the $\mathrm{I}_{3}^{-} / \mathrm{I}_{5}^{-}$ refinements did not yield significantly different agreement factors, we believe the $I_{3}^{-} / I_{5}^{-}$model is the more reasonable one. A few of the models will now be discussed in more detail. Each refinement mentioned utilized isotropic thermal parameters for $\mathbf{H}$ and anisotropic thermal parameters for all other atoms. It should be noted that for disorders of this type, the coordinates chosen for the partially occupied disordered sites actually represent a mean value for a range of unresolved, closely spaced, atomic positions. This is usually indicated by a large value for the anisotropic thermal parameter $\beta_{33}$ for which the present structures are no exception.

The unique channel at $x, y=\frac{3}{8}, \frac{1}{8}$ (Fig. 1a) contains two equivalent electron density maxima separated by $c / 2$. The peaks lie at different $y$ values on twofold axes along $b$ and are related by a twofold screw axis along c. We have considered the peaks to be caused by the overlap of partially occupied, disordered atomic sites situated between the twofold axes, i.e. I(1) sites approximately $c / 4$ apart. Then the chain can be composed of an infinite sequence of $\mathrm{I}_{3}^{-}$units occupying 2.5 or 2.75 cells, depending on the non-bonded distance adopted, with bonding between atoms about $3 c / 4$ apart:

$$
\mathrm{I} \frac{3 c / 4}{2.8 \AA} \mathrm{I} \frac{3 c / 4}{2 \cdot 8 \AA} \mathrm{I} \underset{3.7 \text { or } 4.6 \AA}{ } \ldots \text { or } 5 c / 4
$$

The shorter non-bonding distance yields 0.3 for the site-occupancy factor and the longer, 0.273 . The $I_{3}^{-}$ ions are not linear but are bent by about $10^{\circ}$, probably because of close contacts with the donor H atoms. These contacts also act to inhibit the formation of the incommensurate lattice whose dimension, $9.39 \AA$, might be considered the natural repeat distance of longitudinally unconstrained $\mathrm{I}_{3}^{-}$units in this crystal. Thus the 2.5 cell repeat ( $9.25 \AA$ ), being shorter than this, is unlikely, leaving the 2.75 cell repeat ( $10 \cdot 18 \AA$ ) as the more probable.

The channel at approximately $x, y=\frac{1}{8}, \frac{1}{4}$ (Fig. 1a) represents one of the other two equivalent iodine columns associated with a donor stack. It resembles the previous case in that there are two distinct electron density maxima separated by $c / 2$ which lie at different $y$ values on twofold axes along $b$. The situation differs, however, because the maxima are not symmetry related and have different densities in the ratio of $2 / 1$, indicating that the positions are unequally occupied. As before, the peaks can be considered to arise from the overlap of partially occupied, disordered atomic sites situated between the twofold axes with approximate location of $\mathrm{I}(2)$ at $c / 2$ and $3 c / 4$ and $\mathrm{I}(3)$ at $c / 4$ and $z=0$.

Chains of $I_{3}^{-}$with $I(2)$ and $I(3)$ arranged as in the I(1) channel are not reasonable because such an arrangement should give equal electron densities and the occupancies would total $3 \times 0.273=0.819$, which overestimates the iodine content of the crystal. Refinement of such a model, but with equal occupancies adjusted to 0.265 to satisfy stoichiometry, converged to $R=0.067$ ( $R_{w}=0.092$ ).

Unequal occupancies were also assigned to the iodine atoms. In the extreme case of $\mathrm{I}(2) / \mathrm{I}(3)=2 / 1$, the $I_{3}^{-}$ions would occupy three unit cells:

$$
\mathrm{I}(2) \frac{3 c / 4}{2 \cdot 8 \AA} \mathrm{I}(2) \frac{3 c / 4}{2 \cdot 8 \AA} \mathrm{I}(3) \underset{5 \cdot 6 \AA}{3 c / 2} \mathrm{G}(2) .
$$

The occupancies would be 0.333 for $I(2)$ and 0.167 for I(3). A model with these occupancies and an occupancy of 0.3 for $I(1)$ refined to $R=0.068$ ( $R_{w^{\prime}}=0.091$ ). To find the occupancy parameters which would give the best fit to the data, we refined the occupancy parameters of $I(1), I(2)$ and $I(3)$ using only $h k l, l \neq 0$ data to eliminate any contribution of iodine to the incommensurate lattice. Because of high correlations, the $\beta_{33}$ parameters for the I atoms were held constant at 0.18 . Occupancies of $0.28,0.30$ and 0.21 for $\mathrm{I}(1)$, $\mathrm{I}(2)$ and $\mathrm{I}(3)$, respectively, resulted. Refinement of all atoms with these occupancies and the complete data set converged to $R=0.058$ ( $R_{w}=0.068$ ). The occupancy for $I(1)$ and the total occupancy $(0.79)$ were both encouragingly close to expected values. The problem with the $I(2)$ and $I(3)$ occupancies is that they require variable non-bonded intervals between $I_{3}^{-}$units in the chain, either $5 c / 4$ or $6 c / 4$.

At this time we became aware of the probable presence of both $\mathrm{I}_{3}^{-}$and $\mathrm{I}_{5}^{-}$in the crystal. Consideration of bond lengths in the donor molecule (discussed later) suggested the possibility that $I_{5}^{-}$ions occupied the two symmetry-related $\mathrm{I}(2) / \mathrm{I}(3)$ channels and $I_{3}^{-}$ions occupied the $I(1)$ channel. An approximately linear $\mathrm{I}_{5}^{-}$molecule can be formulated if one postulates an additional I atom $[\mathrm{I}(2 A)]$ at $z=\frac{5}{8}$ on the twofold axes:

$$
\mathrm{I}(3) \frac{3 c / 4}{2 \cdot 8 \AA} \mathrm{I}(2) \frac{7 c / 8}{3 \cdot 2 \AA} \mathrm{I}(2 A) \frac{7 c / 8}{3 \cdot 2 \AA} \mathrm{I}(2) \frac{3 c / 4}{2 \cdot 8 \AA} \mathrm{I}(3) \underset{6 \cdot 5 \AA}{\frac{7 c / 4}{} \mathrm{I}} \mathrm{I}(3) .
$$

These distances agree with those reported by Herbstein \& Kapon (1972) for $\mathrm{I}_{5}^{-}$in a similar complex. The occupancies relative to the asymmetric unit are 0.2 for $\mathrm{I}(2)$ and $\mathrm{I}(3)$ and $0 \cdot 1$ for $\mathrm{I}(2 A)$, which combine with 0.273 for $\mathrm{I}(1)$ to give a total occupancy of 0.773 . The addition of atom $\mathrm{I}(2 A)$ is consistent with the higher electron density around $\mathrm{I}(2)$ compared to $\mathrm{I}(3)$. Refinement with these occupancies gave $R=0.057$ ( $R_{w}=0.068$ ). Although there is no significant improvement in agreement compared to the best $I_{3}^{-}$model, the $\mathrm{I}_{5}^{-} / \mathrm{I}_{3}^{-}$model appears to be more chemically reasonable and we have taken it as our refined structure.

On the final cycle, only six out of 139 parameter shifts were $>0.1 \sigma$ with a maximum shift of $0.27 \sigma$. A difference electron density map contained residual density within $\pm 0.37$ e $\AA^{-3}$. The residual density in the I channels was positive but $\leq 0.22$ e $\AA^{-3}$, indicating that the I atom contributions may have been slightly underestimated. The final atomic parameters, with

Table 2. Final atomic parameters for DTPI $1\left(\times 10^{3}\right.$ for H and $\times 10^{4}$ for other atoms)

For the non-hydrogen atoms, equivalent isotropic thermal parameters $(B)$ were calculated from the refined anisotropic thermal parameters (Hamilton, 1959).

|  | $x$ | $y$ | $z$ | $B\left(\AA^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| S | 2494.8 (5) | 1250 | 1250 | $3 \cdot 6$ |
| C(1) | 1483 (2) | 1250 | 1250 | $3 \cdot 2$ |
| C(2) | 1717 (2) | 1468 (1) | 1832 (14) | $3 \cdot 3$ |
| C(3) | 2153 (2) | 1495 (1) | 1923 (13) | $3 \cdot 3$ |
| C(4) | 2381 (2) | 1725 (1) | 2600 (13) | $3 \cdot 4$ |
| C(5) | 2188 (2) | 1946 (1) | 1703 (16) | $4 \cdot 1$ |
| C(6) | 2407 (2) | 2161 (1) | 2224 (19) | $5 \cdot 1$ |
| C(7) | 2814 (2) | 2163 (1) | 3606 (19) | $5 \cdot 5$ |
| C(8) | 3011 (2) | 1948 (1) | 4533 (17) | $5 \cdot 0$ |
| C(9) | 2798 (2) | 1730 (1) | 3965 (16) | $4 \cdot 2$ |
| I(1) | 3761 (2) | 1298 (1) | -113 (12) | $10 \cdot 2$ |
| I(2) | 1255 (3) | 2323 (1) | 4613 (15) | $7 \cdot 1$ |
| $\mathrm{I}(2 A)$ | 1250 | 2299 (2) | 6250 | $4 \cdot 8$ |
| I(3) | 1265 (2) | 2409 (2) | 94 (13) | 9.9 |
| H(2) | 157 (2) | 160 (1) | 244 (13) | $4 \cdot 2$ (13) |
| H(5) | 190 (2) | 195 (1) | 59 (14) | 4.4 (12) |
| H(6) | 229 (2) | 230 (1) | 161 (19) | 7.7 (19) |
| H(7) | 300 (2) | 231 (1) | 401 (15) | 5.7 (14) |
| H(8) | 329 (2) | 194 (1) | 579 (14) | $4 \cdot 7$ (12) |
| H(9) | 296 (1) | 159 (1) | 485 (12) | $2 \cdot 5$ (10) |

estimated standard deviations in parentheses, are given in Table 2.*

## DTPI2

The structure determination of DTPI2 was concurrent with that of DTPI 1 and followed a very similar path. Unit-cell data required the donor molecules also to have crystallographic 222 symmetry and to stack along $c$. In addition, the tetragonal symmetry dictated the orientation of the molecular axis. Again, the streaking of the precession photographs indicated that the iodine atoms formed one-dimensionally disordered chains of polyiodide ions along c. From the large number of streaks and their enhanced intensities, it was evident that there was a relatively high proportion of I atoms occupying the $9.7 \AA$ incommensurate lattice of this form. The observed density of the crystals implied a unit-cell composition of two $\varphi_{4} \mathrm{DTP}(\mathrm{I})_{2 \cdot 25}$ units, which in $P \overline{4} b 2$ corresponds to two symmetrically equivalent polyiodide chains per donor stack with approximately 0.56 I atoms per asymmetric unit. Resonance Raman spectra (Trotter, 4979 ) indicated only the presence of $\mathrm{I}_{3}^{-}$ions.

An $h k 0$ Patterson map yielded the $c$-axis projection of the entire structure. Subsequent three-dimensional electron density maps, initially phased with $S$ and $C(1)$, revealed the $z$ parameters for the atoms of the donor molecule. A plausible model for the iodine chain allowed refinement of the donor molecule with anisotropic temperature factors, and the H atom positions were then obtained from a difference electron density map.

Complete refinement was again hampered by the disorder of the I atoms. Although the relatively intense streaking on the precession photographs indicated that a substantial portion of the I atoms occupied a lattice incommensurate with that of the donor, it was evident that the iodines also make substantial contributions to structure factors with $l \neq 0$. Also, the distribution of electron density along the channel, shown in Fig. 1(c), is not uniform along c. A single maximum is located on the twofold axis at $z=\frac{1}{2}$ with the electron density decreasing to about half the maximum value at $z=0$. We attribute this distribution to the overlap of partially and unequally occupied, disordered atomic sites situated between the twofold axes, with the I atoms approximately $c / 4$ apart, superimposed upon background density caused by the contribution of the incommensurate atoms to $h k 0$ reflections.

The $\mathrm{I}_{3}^{-}$model eventually adopted and refined consisted of $\mathrm{l}(1)$ atoms at approximately $z= \pm c / 8$ and

[^1]$\mathrm{I}(2)$ atoms at approximately $z=\frac{1}{2} \pm c / 8$ with $\mathrm{I}(2) / \mathrm{I}(1)$ occupancies in the ratio of $2 / 1$. This model ideally requires an $I_{3}^{-}$ion to occupy three unit cells:
$$
\mathrm{I}(2) \frac{3 c / 4}{-} \mathrm{I}(2) \stackrel{3 c / 4}{ } \mathrm{I}(1)^{6 c / 4} \mathrm{I}(2) .
$$

For $100 \%$ commensurate $I$ atoms, the $I(1)$ and $I(2)$ occupancies would be 0.167 and 0.333 , respectively, which results in a stoichiometry, $\varphi_{4} \mathrm{DTP}(\mathrm{I})_{2.00}$, deficient in iodine. For $100 \%$ incommensurability of the I atoms, the stoichiometry becomes $\varphi_{4} \mathrm{DTP}(\mathrm{I})_{2.30}$. Contributions by both lattices to a crystal results in intermediate compositions.

Refinement with isotropic thermal parameters for H and anisotropic thermal parameters for all other atoms, with occupancies of 0.193 for $I(1)$ and 0.385 for $I(2)$ to give a better stoichiometry, yielded $R=0.042$ ( $R_{w}=0.050$ ) for a completely commensurate lattice. Included in the latter stages of the calculations was an extinction parameter (Larson, 1969), $g=4 \cdot 1(1) \times$ $10^{-6}$, obtained by refining the 206 largest structure factors with unit weights. Although a good agreement factor was obtained, the refinement had not converged fully, since the $\beta_{33}$ values for both $I(1)$ and $I(2)$ were increasing substantially with each refinement cycle.

The least-squares program was modified to include scattering contributions from $100 \%$ of the I atoms to $h k 0$ reflections and from $(100-N) \%$ of the I atoms to $h k l, l \neq 0$ reflections, where $N$ is the percentage of 1 incommensurate with the subcell. Refinements were performed with $N=50,60,70$ and $80 \%$ in which all parameters converged. Values of $N$ less than $50 \%$ (except for $N=0$ above) were not considered, since the

Table 3. Final atomic parameters for DTPI2 $\left(\times 10^{3}\right.$ for H and $\times 10^{4}$ for other atoms)

For the non-hydrogen atoms, equivalent isotropic thermal parameters ( $B$ ) were calculated from the refined anisotropic thermal parameters (Hamilton, 1959).

|  | $x$ | $y$ | $z$ | $B\left(\AA^{2}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| S | $3615 \cdot 3$ (5) | 1384.7 (5) | 0 | $3 \cdot 3$ |
| C(1) | 4742 (2) | 258 (2) | 0 | $3 \cdot 1$ |
| C(2) | 4914 (2) | 949 (2) | 575 (13) | $3 \cdot 0$ |
| C(3) | 4469 (2) | 1479 (2) | 674 (12) | $2 \cdot 8$ |
| C(4) | 4676 (2) | 2190 (2) | 1352 (12) | 2.9 |
| C(5) | 5320 (2) | 2418 (2) | 449 (17) | 3.7 |
| C(6) | 5507 (3) | 3084 (3) | 998 (15) | 4.5 |
| $\mathrm{C}(7)$ | 5048 (3) | 3536 (3) | 2385 (15) | 4.7 |
| C(8) | 4402 (3) | 3323 (3) | 3313 (15) | 4.2 |
| C(9) | 4209 (3) | 2650 (2) | 2781 (14) | $3 \cdot 5$ |
| I(1) | 7225 (5) | 2277 (4) | 1437 (31) | 8.1 |
| I(2) | 7152 (4) | 2163 (3) | 3842 (15) | 7.7 |
| H(2) | 536 (2) | 107 (3) | 114 (14) | 4.5 (13) |
| H(5) | 558 (3) | 208 (3) | -85 (18) | $5 \cdot 5$ (15) |
| H(6) | 591 (4) | 331 (3) | -24 (24) | 7.8 (17) |
| H(7) | 517 (3) | 402 (3) | 312 (13) | $4 \cdot 1$ (11) |
| H(8) | 410 (2) | 363 (2) | 433 (14) | $3 \cdot 6$ (11) |
| H(9) | 374 (2) | 248 (2) | 351 (11) | $2 \cdot 9$ (9) |

stoichiometry was too iodine deficient for such compositions. The best agreement, $R=0.042$ ( $R_{w^{\prime}}=0.054$ ), was obtained for $N=50$, which corresponds to a stoichiometry $\varphi_{4} \mathrm{DTP}(\mathrm{I})_{2.15}$. We have taken this as our final refinement.

On the final cycle, all shifts were $<0 \cdot 1 \sigma$. Residual density in a final difference electron density map was within $\pm 0.21$ e $\AA^{-3}$ except in the I channel where the residual density was generally negative with a maximum deviation of $-0.81 \mathrm{e} \AA^{-3}$, indicating that the I atom contributions to the commensurate lattice were somewhat overestimated. The final atomic parameters with estimated standard deviations in parentheses are given in Table 3.* Figs. 2-4 described below were drawn with the aid of the computer program ORTEP II (Johnson, 197I).

> * See previous footnote.


Fig. 2. Bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for DTPI 1 (upper figures) and DTPI2 (lower figures). Estimated standard deviations are given in parentheses.


Fig. 3. DTPI 1 viewed along the $\mathrm{S} \cdots \mathrm{S}$ vector.


Fig. 4. (001) projections. (a) DTPI1. I(1) atoms occupy the channels between the $S$ atoms. In the other I channels, the smaller atom is $I(3)$ and the larger atom represents $I(2)$ and $\mathrm{I}(2 A)$. The fractions give the $z$ coordinates of the centers of the DTP molecules. ( $b$ ) DTPI2. $1(1)$ is displaced toward S compared to I(2). All DTP molecules are centered at $z=0$.

## Discussion

The bond lengths and angles for the donor molecules in both structures are given in Fig. 2. There are no significant differences in the bond lengths of the two forms, the largest deviation being $2 \cdot 0 \sigma$ for $S-C(3)$. The angles, which are strongly influenced by packing forces, also agree well, the largest deviation being $3 \cdot 2 \sigma$ for $C(3)-C(4)-C(9)$. Because of the similarity in bond lengths, we believe that the donor molecules are partially oxidized to about the same degree in both DTPII and DTPI2. From the stoichiometry of the final refinements, $\varphi_{4} \mathrm{DTP}\left(\mathrm{I}_{3}\right)_{0.36}\left(\mathrm{I}_{5}\right)_{0.40}$ for DTPI1 and $\varphi_{4} \mathrm{DTP}\left(\mathrm{I}_{3}\right)_{0.72}$ for DTPI2, one expects the donor radical cations to have formal net charges of +0.76 for DTPI 1 and +0.72 for DTPI2, which are not very different.

The alternative refinement for DTPI1, in which all I atoms were present as $\mathrm{I}_{3}^{-}$, had a stoichiometry $\varphi_{4} \mathrm{DTP}\left(\mathrm{I}_{3}\right)_{1.05}$, which implies a charge of at least $+\mathrm{I} \cdot 0$ for the donor ions and should give bond lengths for DTPII significantly different from those of DTPI2. This was one of the considerations that led us to the specific $l_{3}^{-} / I_{5}^{-}$model used in the refinement of DTPI1.

The expected bond numbers (Pauling, 1960; BurkeLaing \& Laing, 1976) for an average structure resulting from contributions of $26 \%$ neutral form (a) and $74 \%$ radical-ion form (b),


(a)


which has 12 approximately equivalent forms, are given in Table 4 along with a comparison of predicted bond lengths and the experimental values determined here. Agreement is fairly good, although the bridge bond $\left|C(1)-C(1)^{\prime \prime}\right|$ is longer and $C(1)-C(2)$ is shorter than predicted. The differences can be accounted for by postulating a form (c)


(c)
in which charges in the neutral molecule (a) have separated to form an aromatic sextet in one of the thiapyranylidene rings. Canonical structure (c) has 12 approximately equivalent forms which are completely analogous to the 12 forms of $(b)$, and thus contributions from (c) produce the same effect as a larger formal positive charge. Predicted values of bond numbers and bond lengths for contributions of $74 \%$ (b), $20 \%$ (a), and $6 \%$ (c) are also given in Table 4. Predicted and experimental values show excellent agreement. The potential contribution of structures such as (c) is strongly supported by our structure determination for unoxidized $\varphi_{4}$ DTP in which the bond lengths can be accounted for by a structure with $50 \%$ (a) and $50 \%$ (c) character (Luss \& Smith, 1980).

Although the individual thiapyranylidene and phenyl rings are planar, the donor molecules are not, since the

Table 4. Comparison of experimental bond lengths with expected values from bond-length bond-number curves

Distances are in $\AA$. Bond numbers are denoted by $n$, bond lengths by $r$.

|  | $\begin{gathered} \text { Predicted } \\ \text { values } \\ 74 \%(b), 26 \%(a) \end{gathered}$ |  | Experimental bond lengths |  | $\begin{gathered} \text { Predicted values } \\ 74 \%(b), 20 \%(a), \\ 6 \%(c) \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | , | $r$ | DTPI1 | DTPI2 | $r$ | $n$ |
| S-C(3) | $1 \cdot 19$ | * | 1.729 | 1.715 | * | 1.20 |
| $\mathrm{C}(1)-\mathrm{C}(1)^{\prime \prime}$ | 1.26 | 1.434 | 1.447 | 1.442 | 1.445 | $1 \cdot 20$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.31 | 1.425 | 1.417 | 1.422 | 1.420 | 1.33 |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.69 | 1.364 | 1.360 | 1.366 | 1.366 | 1.67 |
| C(3)-C(4) | 1.00 | 1.480 | 1.465 | 1.482 | 1.480 | 1.00 |

* A reliable estimate from bond-length bond-number curves is difficult. $V$ arious $\mathrm{S}-\mathrm{C}_{s p^{2}}$ single bond lengths have been proposed including $1.75 \AA$ (Jones \& Power, 1976), 1.77 Á (Argay, Kảlmán, Nahlovski \& Ribár, 1975), $1.82 \AA$ (Abrahams, 1956) and $1.78 \AA$ from the sum of the covalent radii (Pauling, 1960). The short $\mathrm{S}-\mathrm{C}_{s p^{2}}$ bonds in this work indicate some degree of double-bond character and compare favorably with those found in $\mathrm{TTT}_{2} 1_{3} \mid \mathrm{av} .-1.738$ (3) $\AA$ |, where a bond number of 1.13 can be expected.
rings are all twisted relative to each other. This is evident from Fig. 3, in which the donor molecule is viewed along the $\mathrm{S} \cdots \mathrm{S}$ axis. The amount of twist is similar in both forms. The dihedral angles between the thiapyranylidene rings are $20.7^{\circ}$ in DTPI 1 and $20.9^{\circ}$ in DTPI2. The thiapyranylidene and phenyl rings form dihedral angles of $26.1^{\circ}$ in DTPI 1 and $26.5^{\circ}$ in DTPI2. The $21^{\circ}$ angle between the thiapyranylidene rings is possible because of the high degree of single-bond character for $\mathrm{C}(1)-\mathrm{C}(1)^{\prime \prime}$. The twist, by reducing $\pi$ overlap, may in turn enhance canonical form (b) at the expense of form (a), which also could account for the lengthening of $\mathrm{C}(1)-\mathrm{C}(1)^{\prime \prime}$ and the shortening of $\mathrm{C}(1)-\mathrm{C}(2)$ compared to expected values.

The (001) projection of the DTPII structure is shown in Fig. 4(a). The positions of the centers of the $\varphi_{4}$ DTP moieties are given to show that the molecules in cyclic groups of four donor stacks describe a helix; both right- and left-handed helices are present. The polyiodide ions fit into distinct channels between the stacks. The minimum distances ( $a$ through $e$, Fig. 4a) from H and S atoms to the midpoints of the I chains are: $a=2.99, b=3.24, c=2.97, d=3.89$, and $e=3.08 \AA$. Except for $b$, these distances are all less than the sums of van der Waals radii $\mid 3 \cdot 15 \AA$ for $\mathrm{I}+\mathrm{H}, 4.00 \AA$ for $\mathrm{I}+\mathrm{S}$ (Pauling, 1960)I. Thus, it appears that the channels are constricted by atoms of the donor subcell and the polyiodide ions are greatly inhibited from occupying the incommensurate lattice. Departures from linearity of the polyiodide ions are also caused by the constrictions of the channels. The measured contacts are as short as 3.06 (6) for $\mathrm{I} \cdots \mathrm{H}$ and $3.965(8) \AA$ for $\mathrm{I}(\mathrm{I}) \cdots \mathrm{S}$. Although the $\mathrm{I} \cdots \mathrm{H}$ distances would be even shorter if the 'true' positions of the H atoms were considered, the contacts are not
unreasonable given the uncertainty in the I atom positions.
The bond lengths ( $\AA$ ) and angle in the $I_{3}^{-}$ions of DTPII are:

$$
\mathrm{I}(1) \frac{2.74(1)}{\mathrm{I}(1))^{2 \cdot 86(1)} \mathrm{I}(1) \stackrel{4.54(1)}{ }{ }^{\circ} \mathrm{I}(1) .}
$$

The standard deviations given are from the leastsquares process and do not reflect the uncertainties in iodine positions caused by the disorder. These bond distances compare to a normal value of about $2.92 \AA$, but the angle falls considerably outside the range 174-180 ${ }^{\circ}$ normally encountered (Runsink, SwenWalstra \& Migchelsen, 1972). The bond lengths ( $\AA$ ) and angles in the $I_{5}^{-}$ions are:

$$
\mathrm{I}(3) \frac{2.92(1)}{173.0(4)^{\circ} \quad 175 \cdot 1(6)^{\circ} \quad 173.0(4)^{\circ}} \frac{3 \cdot 10(1)}{} \mathrm{I}(2 A) \frac{3 \cdot 10(1)}{} \mathrm{I}(2) \frac{2 \cdot 92(1)}{} \mathrm{I}(3) \cdots \cdots \cdots \mathrm{I}(3) .
$$

These distances compare with the sequence $2 \cdot 74,3 \cdot 26$, $3.26,2.74$ and $3.50 \AA$ reported for the analysis of diffuse layer lines in trimesic acid polyiodide (Herbstein \& Kapon, 1972). Our non-bonded distance is large to allow the repeat of $\mathrm{I}_{5}^{-}$ions of one type and one orientation. A shorter repeat distance could be realized if other configurations and orientations of $\mathrm{I}_{5}^{-}$were allowed, but this would require the introduction of additional I atoms and would tend to equalize the electron densities along the columns, contrary to the observed distribution. Our model predicts a ratio of $3 / 2$ for the electron densities around $\mathrm{I}(2)$ and $\mathrm{I}(3)$ and is consistent with values of the occupancies obtained in the least-squares refinement and with the low symmetry of the $\mathrm{I}(2) / \mathrm{I}(3)$ channel.

The (001) projection of the DTPI2 structure is shown in Fig. 4(b). In this structure, the $\varphi_{4}$ DTP ions lie in (001) sheets at the same $z$ level so there is no helical arrangement as in DTPII. As a result of the tetragonal symmetry, the molecular stacks pack with the side of one donor stack facing the end of the adjacent stack, and only one type of channel is formed which can accommodate polyiodide ions. The minimum distances from H and S atoms to the midpoint of the $\mathrm{I}_{3}^{-}$chain ( $a=4 \cdot 27, b=3 \cdot 22, c=3 \cdot 36, d=3 \cdot 10$, and $e=3.94$ $\AA$, Fig. 4b) indicate that there is considerably less constriction here than in DTPII. Hence, one might expect DTPI2 to exhibit a much greater degree of incommensurability than DTPII. From the refincments the degree of incommensurability approaches $50 \%$ in DTPI 2 but is very small in DTPII. Observed short contacts are $\mathrm{I}(1) \cdots \mathrm{S}=3.85(1)$ and $\mathrm{I}(1) \cdots \mathrm{H}(9)$ $=3.12$ (4) $\AA$. These weak interactions help account for the confinement of approximately half of the $\mathrm{I}_{3}^{-}$ions to the donor subcell as well as the $2 / 1$ ratio for $I(2) / 1(1)$.

The bond lengths ( $\AA$ ) and angle of the $\mathrm{I}_{3}^{-}$ions in DTPI2 are:

$$
\left.\mathrm{I}(2) \frac{2.86(1)}{174.7(5)^{\circ}} \mathrm{e}\right)^{2.84(1)} \mathrm{I}(1) \stackrel{5.49(1)}{ } \mathrm{I}(2) .
$$

Both the angle and the bond distances are reasonable. The non-bonded distance is large and allows the repeat of $I_{3}^{-}$ions of one orientation. A shorter repeat distance requires the addition of $\mathrm{I}(1)-\mathrm{I}(1)-\mathrm{I}(2)$ units, which would tend to equalize the occupancies of $\mathrm{I}(1)$ and $\mathrm{I}(2)$ and would create more short I...S contacts. In addition, the $\mathrm{I}(1)-\mathrm{I}(1)$ bond length, $2.66 \AA$, would be rather short. The $2 / 1$ ratio of occupancies arising from $\mathrm{I}(2)-\mathrm{I}(2)-\mathrm{I}(1)$ triiodide ions is supported by the refinement, the electron density distribution, the short $\mathrm{I}(1) \cdots \mathrm{S}$ contact and the low symmetry of the channel.

The plane-to-plane separation of the thiapyranylidene rings is 3.64 in DTPI1 and $3.66 \AA$ in DTPI2. The separation between planes through the phenyl rings is 3.42 in DTPI1 and $3.43 \AA$ in DTPI2. These distances are all normal values and do not indicate any unusual interaction between donor molecules. All other intermolecular contacts were greater than the sums of van der Waals radii.

We thank Ms E. D. Schneider for providing the crystals, Dr J. H. Perlstein for suggesting the problem and for helpful discussions, and Dr P. J. Trotter for the resonance Raman results and for his convincing demonstration of the presence of $\mathrm{I}_{5}^{-}$in DTPI 1. We also thank Drs R. P. Scaringe and L. C. Isett for reading the manuscript and for discussions concerning the diffuse scattering. Dr Isett has pointed out to us that the extra streak at $2.7 \AA$ for DTPI2 would actually equal $9.7 \AA$, the incommensurate $\mathrm{I}_{3}^{-}$spacing, if measured from the $l=1$ row of spots. This is consistent with scattering by a static charge density wave, a modulation on the $\varphi_{4}$ DTP stack caused by the interaction of the incommensurate $I_{3}^{-}$chains with the conduction electrons on the $\varphi_{4}$ DTP stack. From charge-neutrality considerations (Isett et al., 1979b) the Fermi wave vector, $2 k_{F}$, for this modulation is

$$
2 k_{F}=2 \pi f_{D} / 2 c=2 \pi / c^{\prime}=2 \pi / 9 \cdot 7,
$$

where $f_{D}$ is the fractional charge per donor which is 0.77 for a fully incommensurate triiodide component. It is possible that the modulation and the charge density wave could be associated with the commensurate $I_{3}^{-}$chains. We believe this is unlikely since it would require fractional charges for the triiodide ions. X -ray diffuse scattering experiments are needed to definitively explain the extra streak.

## References

Abrahams, S. C. (1956). Q. Rev. Chem. Soc. 10, 407-436.
Alizon, J., Blanc, J., Gallice, J., Robert, H., Fabre, C., Strzelecka, H., Rivory, J. \& Weyl, C. (1977). Lecture Notes in Physics, 65, Organic Conductors and Semiconductors, edited by L. Pal, G. Gruner, A. Janossy \& J. Solyom, pp. 563-569. New York: Springer.

Argay, Gy., Kálmán, A., Nahlovski, A. \& Ribár, B. (1975). Acta Cryst. B3 1, 1956-1961.

Burke-Laing, M. \& Laing, M. (1976). Acta Cryst. B32, 3216-3224.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Endres, H., Harms, R., Keller, H. J., Moroni, W., Nothe, D., Vartanian, M. H. \& Soos, Z. G. (1979). J. Phys. Chem. Solids, 40, 591-596.
Endres, H., Keller, H. J., Mégnamisi-Bélombé, M., Moron, W., Pritzkow, H., Weiss, J. \& Comès, R. (1976). Acta Cryst. A 32, 954-957.

Hamilton, W. C. (1959). Acta Cry'st. 12, 609-610.
Herbstein, F. H. \& Kapon, M. (1972). Acta Cry'st. A28, S74-S75.
Huml, K. (1967). Acta Cryst. 22, 29-32.
International Tables for X-ray' Crystallography (1974). Vol. IV, chap. 2. Birmingham: K ynoch Press.
Isett, L. C. (1978). Phys. Rer. B. 18, 439-447.
Isett, L. C. \& Perez-Albuerne, E. A. (1977). Solid State Commun. 21, 433-435.
Isett, L. C., Reynolds, G. A., Schneider, E. D. \& Perlstein, J. H. (1979a). Unpublished results.
Isett, L. C., Reynolds, G. A., Schneider, E. D. \& Perlstein, J. H. (1979b). Solid State Commun. 30, 1-6.
Johnson, C. K. (1971). ORTEP II. Report ORNL-3794, second revision. Oak Ridge National Laboratory, Tennessee.
Jones, R. D. G. \& Power, L. F. (1976). Acta Cryst. B32, 1801-1806.
Larson, A. C. (1969). Cry'stallographic Computing, edited by F. R. Ahmed, pp. 291-294. Copenhagen: Munksgaard.
Luss, H. R. \& Smith, D. L. (1973). Acta Cryst. B29, 998-1005.
Luss, H. R. \& Smith, D. L. (1980). Acta Cry'st. B36, 986-989.
Pauling. L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell Univ. Press.
Perlstein, J. H. (1977). Angew. Chem. Int. Ed. Engl. 16, 519-534.
Runsink, J., Swen-Walstra, S. \& Migchelsen, T. (1972). Acta Cryst. B28, 1331-1335.
Smith, D. L. \& Luss, H. R. (1977). Acta Cryst. B33, 1744-1749.
Stucky, G. D., Schultz, A. J. \& Williams, J. M. (1977). Annu. Rec: Mater. Sci. 7, 301-339.
Trotter, P. J. (1979). Unpublished results.


[^1]:    * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35169 ( 20 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

